
Signals

Mohiuddin Khan

CIT, IUT

contact@mohiuddinkhan.com

Why signals?

ÅUnpredictable situations occur
ïFloating point error

ïUser interrupts (Ctrl ςC)

Å¢ƘŜǎŜ ŜǾŜƴǘǎ ΨƛƴǘŜǊǊǳǇǘǎΩ ǘƘŜ ƴƻǊƳŀƭ Ŧƭƻǿ ƻŦ
execution

ÅThe Kernel responds by sending a signal to the
process

ÅSo, a signal is a software notification to a
process of an event

Signals

ÅSignals can also be raised by any process to
another (given the permission)

ÅEach of the signals has a symbolic name
starting with SIG, defined in signal.h

ÅEach signal has a default action

ïWhich we can catch

ïAnd then handle it our way

How signals work

Signal Generated
Process

Signal Handler

Signal delivered

Signal not blocked

Signal Caught by handler

Return from Signal Handler

Process Resumed

Actions on receiving a signal

1. Invoke a user-supplied signal handler

2. Invoke the default kernel-supplied handler

a) terminates the process, and generates a dump (core)

b) terminates the process without core image file (quit)

c) ignores and discards the signal (ignore)

d) suspends the process (stop)

e) resumes the process

3. Ignore the signal

Example of some signals

Signal # Description default action

SIGABRT 6 process abort implementation
dependent

SIGALRM 14 alarm clock abnormal
termination

SIGCHLD 17 child terminated, stopped or
continued

ignore

SIGILL 4 invalid hardware instruction implementation
dependent

SIGINT 2 interactive attention signal
(usually ctrl -C)

abnormal
termination

SIGKILL 9 terminated (cannot be caught
or ignored)

abnormal
termination

Signal in action: alarm
main ()
{
 alarm (3); /* Schedule an alarm signal in three seconds */
 printf ("Looping forever...\n");
 while (1);
 printf ("This line should never be executed\n");
}

$./alarm ...run the program.
Looping forever...
Alarm clock ...occurs three seconds later.
$ _

Handling signals: signal()

Åvoid (*signal (int sigCode, void (*func)(int)))
(int) Ą looks rather cryptic!

ÅValue of func can be either one of them:
1. SIG_IGN: Ignore and discard

2. {LDψ5C[Υ ǳǎŜ ƪŜǊƴŜƭΩǎ ŘŜŦŀǳƭǘ ƘŀƴŘƭŜǊ

3. an address of a user-defined function

Å signal () returns the previous func value
associated with sigCode if successful;
otherwise it returns -1

Handling the alarm signal

int alarmFlag = 0; /* Global alarm flag */

void alarmHandler ();

main ()

{

 signal (SIGALRM, alarmHandler); /* Install signal handler */

 alarm (3); /* Schedule an alarm signal in three seconds */

 printf ("Looping...\n");

 while (!alarmFlag) /* Loop until flag set */

 {

 pause (); /* Wait for a signal */

 }

 printf ("Loop ends due to alarm signal\n");

}

void alarmHandler ()
{
 printf ("An alarm clock signal was
received\n");
 alarmFlag = 1;
}

Alarm handling: execution

$./handler ...run the program.

Looping...

An alarm clock signal was received ...occurs three seconds later.

Loop ends due to alarm signal

$ _

Protecting critical code
main ()

{

 void (*oldHandler) (); /* To hold old handler value */

 printf ("I can be Control-C'ed\n");

 sleep (3);

 oldHandler = signal (SIGINT, SIG_IGN); /* Ignore Control-C */

 printf ("I'm protected from Control-C now\n");

 sleep (3);

signal(SIGINT, oldHandler).

 printf ("I can be Control-C'ed again\n");

 sleep (3);

 printf ("Bye!\n");

}

Ϸ ΦκŎǊƛǘƛŎŀƭ ΧǊǳƴ ǘƘŜ ǇǊƻƎǊŀƳ
I can be Control-C'ed
^C ...Control-C works
$./critical ...run program again
I can be Control-C'ed
I'm protected from Control-C now
^C ...Control-C is ignored.
I can be Control-C'ed again
Bye!
$ _

Sending signals: kill()

ÅA process may send a signal to another
process by using the kill () system call

Åkill () is a misnomer, as it is not always used to
terminate a process!

ÅIt's called kill () for historical reasons

Åint kill (pid_t pid, int sigCode)

Sending signal from command line: kill

ÅYou can send a signal to a process from the
command line using kill

Åkill -l : list the signals the system understands

Åkill ςsignal pid : sends a signal to a process.

ÅTo unconditionally kill a process, use:

ïkill -9 pid

(same as) kill -SIGKILL pid

Example: handling SIGCHLD

ÅWhen a child terminates, it sends the parent a
SIGCHLD signal.

ÅA parent process can install a handler to
process SIGCHLD signals

ÅYou can allocate a limited time for the child to
execute: [See book for the example]

Example: suspending/resuming

ÅSIGSTOP, SIGCONT: stops/resumes a process

Åkill (pid1, SIGSTOP)

Åkill (pid1, SIGSCONT);

ÅWhere have we seen an application of this?!

Å[See book for example code]

Process groups and control terminals

ÅWhen you're in a shell and you execute a
program that creates several children, a single
Control-C from the keyboard will normally
terminate the program and its children and
then return you to the shell.

ÅHow does it happen?

Process groups, control terminals

ÅIn addition to having a unique process ID
number, every process is also a member of a
process group

ÅWhen a process forks, the child inherits its
process group from its parent

ÅWhen a process execs, its process group
remains the same

ÅA process may change its process group to a
new value by using setpgid ().

Control terminal and control process

ÅEvery process can have an associated control
terminal : typically the terminal where the
process was started.

ÅEvery terminal can be associated with a single
control process.

ÅWhen a metacharacter is detected, the
terminal sends the appropriate signal to all of
the processes in the process group of its
control process

Control terminals and process groups

setpgid()

Åpid_t setpgid (pid_t pid, pid_t pgrpId)

ÅThe process having process id pid is set with
the process group pgrpId

ÅIf pid = 0, the caller's process group ID is set to
pgrpId

ÅThe caller process and the specified process
must have same owner!

ÅWhat If a process wants to start its own
unique process group ?

Child and parent in the same group

main ()

{

 signal (SIGINT, sigintHandler); /* Handle Control-C */

 if (fork () == 0)

 printf ("Child PID %d PGRP %d waits\n", getpid (),getpgid (0));

 else

 printf ("Parent PID %d PGRP %dwaits\n", getpid (), getpgid (0));

 pause (); /* Wait for asignal */

}

void sigintHandler ()

{

 printf ("Process %d got a SIGINT\n",getpid ());

}

$./pgrp1 ...run the program.
Parent PID 24583 PGRP 24583 waits
Child PID 24584 PGRP 24583 waits
^C ...press Control-C.
Process 24584 got a SIGINT
Process 24583 got a SIGINT
$ _

Child and parent in different groups

main ()

{

 int i; signal (SIGINT, sigintHandler); /* Install signal handler */

 if (fork () == 0)

 setpgid (0, getpid ()); /* Place child in its own process group */

 printf ("Process PID %d PGRP %d waits\n", getpid (), getpgid (0));

 for (i = 1; i <= 3; i++) { /* Loop three times */

 printf ("Process %d is alive\n", getpid ());

 sleep(1);

 }

}

$./pgrp2 ...run the program.
Process PID 24591 PGRP 24591 waits
Process PID 24592 PGRP 24592 waits
^C ...Control-C
Process 24591 got a SIGINT ...parent receives signal.
Process 24592 is alive ...child carries on.
Process 24592 is alive
Process 24592 is alive
$ _

void sigintHandler ()
{
 printf ("Process %d got a SIGINT\n", getpid ());
 exit (1);
}

